Heavy Construction News – Newly discovered ‘Casper’ octopod at risk from deep-sea mining — ScienceDaily

Heavy Construction Photos


Last spring, researchers made headlines with the discovery of what was surely a new species of octopod, crawling along the seafloor at a record-breaking ocean depth of more than 4,000 meters (about 2.5 miles) off Necker Island near Hawaii. The octopod’s colorless and squishy appearance immediately inspired the nickname “Casper.” Now, a report published in Current Biology on December 19 reveals that these ghost-like, deep-sea octopods lay their eggs on the dead stalks of sponges attached to seafloor nodules rich in the increasingly valuable metals used in cell phones and computers.

“Presumably, the female octopod then broods these eggs, probably for as long as it takes until they hatch — which may be a number of years,” says Autun Purser of the Alfred Wegener Institute’s Helmholtz Centre for Polar and Marine Research in Germany.

“The brooding observation is important as these sponges only grow in some areas on small, hard nodules or rocky crusts of interest to mining companies because of the metal they contain,” including manganese, he adds. “The removal of these nodules may therefore put the lifecycle of these octopods at risk.”

Purser explains that the deep-sea manganese nodules form similarly to pearls in an oyster. In a process that could take millions of years, metals gradually build up in rocky layers onto a small starting seed, perhaps a shell fragment or a shark’s tooth.

“These nodules look a bit like a potato, and are made up of rings of different shells of metal-rich layers,” Purser says. “They are interesting to companies as many of the metals contained are ‘high-tech’ metals, useful in producing mobile phones and other modern computing equipment, and most of the land sources of these metals have already been found and are becoming more expensive to buy.”

Purser says that little was known about the creatures found in the deep-sea environments where those attractive metals are found. In a series of recent cruises, the researchers set out to find the organisms that live there and to understand how the ecosystem and animals might be impacted by mining activities.

Their studies have shown that octopods are numerous in manganese crust areas, precisely where miners would hope to extract metals of interest. The mineral-biota association that they observed is a first for any octopod lacking fins (a group known as incirrate octopods), and it puts these captivating octopods, which live their long lives at a slow pace, at particular risk.

“As long-lived creatures, recovery will take a long time and may not be possible if all the hard seafloor is removed,” Purser says. “This would be a great loss to biodiversity in the deep sea and may also have important knock on effects. Octopods are sizable creatures, which eat a lot of other smaller creatures, so if the octopods are removed, the other populations will change in difficult to predict ways.”

Purser says that he and his colleagues continue to study the nodules and their importance to microbes and animals both small and large, including starfish, crabs, and fish.

Story Source:

Materials provided by Cell Press. Note: Content may be edited for style and length.



Source link

Brothers and sisters, if someone is caught in a sin, you who live by the Spirit should restore that person gently. But watch yourselves, or you also may be tempted.

Originally posted 2016-12-19 18:45:10. Republished by Blog Post Promoter

Heavy Construction News – Clean energy stored in electric vehicles to power buildings — ScienceDaily

Heavy Construction Photos


Stored energy from electric vehicles (EVs) can be used to power large buildings — creating new possibilities for the future of smart, renewable energy — thanks to ground-breaking battery research from WMG at the University of Warwick.

Dr Kotub Uddin, with colleagues from WMG’s Energy and Electrical Systems group and Jaguar Land Rover, has demonstrated that vehicle-to-grid (V2G) technology can be intelligently utilised to take enough energy from idle EV batteries to be pumped into the grid and power buildings — without damaging the batteries.

This new research into the potentials of V2G shows that it could actually improve vehicle battery life by around ten percent over a year.

For two years, Dr Uddin’s team analysed some of the world’s most advanced lithium ion batteries used in commercially available EVs — and created one of the most accurate battery degradation models existing in the public domain-to predict battery capacity and power fade over time, under various aging acceleration factors — including temperature, state of charge, current and depth of discharge.

Using this validated degradation model, Dr Uddin developed a ‘smart grid’ algorithm, which intelligently calculates how much energy a vehicle requires to carry out daily journeys, and — crucially — how much energy can be taken from its battery without negatively affecting it, or even improving its longevity.

The researchers used their ‘smart grid’ algorithm to see if they could power WMG’s International Digital Laboratory — a large, busy building which contains a 100-seater auditorium, two electrical laboratories, teaching laboratories, meeting rooms, and houses approximately 360 staff — with energy from EVs parked on the University of Warwick campus.

They worked out that the number of EVs parked on the campus (around 2.1% of cars, in line with the UK market share of EVs) could spare the energy to power this building — and that in doing so, capacity fade in participant EV batteries would be reduced by up to 9.1%, and power fade by up to 12.1% over a year.

It has previously been thought that extracting energy from EVs with V2G technology causes their lithium ion batteries to degrade more rapidly.

Dr Uddin’s group (along with collaborators from Jaguar Land Rover) have proved, however, that battery degradation is more complex — and this complexity, in operation, can be exploited to improve a battery’s lifetime.

Given that battery degradation is dependent on calendar age, capacity throughput, temperature, state of charge, current and depth of discharge, V2G is an effective tool that can be used to optimise a battery’s conditions such that degradation is minimised. Hence, taking excess energy from an idle EV to power the grid actually keeps the battery healthier for longer.

Dr Uddin commented on the research, “These findings reinforce the attractiveness of vehicle-to-grid technologies to automotive Original Equipment Manufacturers: not only is vehicle-to-grid an effectivesolution for grid support — and subsequently a tidy revenue stream — but we have shown that there is a real possibility of extending the lifetime of traction batteries in tandem.

“The results are also appealing to policy makers interested in grid decarbonization.”

The research, ‘On the possibility of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated vehicle and smart-grid system’ is published in Energy.

Story Source:

Materials provided by University of Warwick. Note: Content may be edited for style and length.



Source link

Keep this Book of the Law always on your lips; meditate on it day and night, so that you may be careful to do everything written in it. Then you will be prosperous and successful.